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The conventional procedure used to condense the solution of eigenvalue prob-
lems for recovery of the lowest modes is tested by application to practical example
structures. Evaluations are made of eigenvalue accuracy with respect to numbers
of retained solution vectors. It is shown that solutions are likely to be inaccurate
except in the special case of when prior knowledge of the mode shapes is available.
One improvement for recovering the lowest modes is to supplement the retained
vectors with static loading displacement functions. A further remedy is to perform
iterative repetitions of the solution procedure. Great improvements in accuracy can
be achieved with only a few iterative cycles. These improvements are effective in
the typical case of when only a few valid lowest-mode solutions are required and
the order of the problem is large so that it becomes important to minimize the com-
putational time by means of solution condensation.

I. Conventional Condensation Methods

Procedures to condense the order of the eigenvalue
problem solution for structural analysis are frequently
used for computational efficiency and economy. Conven-
tional condensation procedures are described in Refs. 1,
2, and 3.

Although specific descriptions and details of implemen-
tations vary, these approaches to condensation could be
considered as Rayleigh-Ritz approximation techniques
(Ref. 4). The objective is to solve the following homoge-
neous system of N equations for the unknown displace-
ments {X}:

[M] {X) + [K] {X} = (0} (1)
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where M is the mass matrix and K is the stiffness matrix.
The solution consists of the eigenvectors and the corre-
sponding eigenvalues, which are measures of the modal
natural frequencies.

A reduction in the order of the system from N to
L (L < N) can be effected by the transformation

{X}=1L1{& (2)

where [y] is an assumed transformation matrix of order
N X L and {£} is a set of generalized coordinates associ-
ated with the transformation. This reduces the order of
the problem to L, and the equations to be solved become

[M]{£) + [K1{&} =0 (3)
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where

[M] = [y]*[M] [¥] (3a)
and

[K] = [y]' [K] [¥] (3b)

The solution to Eq. (3) produces the eigenvalues and
the modal matrix of eigenvectors [¢] associated with the
set of generalized coordinates. The set of L eigenvectors
of order N for the original system can be recovered from

-

[X] = [y][g] (4)

The transformation matrix, which is the key to the pro-
cedure, can be considered as a set of L N-component
vectors, with each vector equivalent to an assumed dis-
placement function. The approximation of the solution
depends upon how closely the assumed displacement
functions (or linear combinations of them) agree with the
actual eigenvectors.

A simple way to generate a set of displacement func-
tions for the transformation matrix is to make a selection
of a set of L “indicator” degrees of freedom, and then to
develop static displacement vectors consistent with either
unit displacements (Ref. 1) or unit loads (Refs. 2 and 3) at
each indicator. Whether displacements or loads should
be used to generate the displacement functions is theo-
retically immaterial; the logical choice depends upon
convenience of execution for the available software. Con-
sequently, the major requirement in proceeding with a
condensed solution is the selection of suitable indicator
degrees of freedom. In the case of regular classical struc-
tures, such as beams or strings, the true mode shapes are
well known and the choice is not difficult nor critical.
However, for practical structures of irregular geometry
and properties, the important degrees of freedom are not
clearly identifiable. Therefore, success can depend upon
chance.

II. Accuracy Tests of Conventional Method

The accuracy of condensed solutions was assessed for
the analytical models of two structures used in the field
of radar antennas. These particular models are of interest
because they represent practical illustrations of irregu-
lar structures, and depart considerably from classical
examples.

The first model is of an experimental structure built to

simulate a 30-deg sector of a 26-m-diameter reflector. Its
framing is shown in Fig. 1. The structure mass is about
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2400 kg and consists of structural steel tees and angles.
The reflecting surface comprises an additional 360 kg of
nonstructural panels supported on the top chords of the
trusses. Joint connections were idealized as pinned, with
the exception of a few cases in which relatively stiff mem-
bers were continuous across the joints. The mass matrix
for the full model represents 190 translational degrees of
freedom. The order of the stiffness matrix is slightly larger
because of a few rotational degrees of freedom.

The second model is of the pedestal that provides the
support and driving mechanism for the polar wheel of a
26-m-diameter reflector. Figure 2 shows a view of the
framework. Bearings on the polar shaft support the polar
wheel; the polar drive is by pinions at the drive skid. The
mass of the framing members—steel angles, tees, pipes,
and wide-flange beams—is about 42,000 kg. Additional
concentrations, which total 18,000 kg, are distributed to
joints in the vicinity of the drive skid and at the upper
and lower bearings of the polar shaft. The mass matrix
for the full model has 165 translational degrees of free-
dom. The stiffness matrix, with rotations included, con-
tains 195 degrees of freedom.

The orders of both of these models were so small that
it was feasible to solve the eigenvalue problems without
condensation. After this, the solution accuracy for the first
four frequencies and mode shapes was tracked through
successive condensation solutions with diminishing num-
bers of indicator degrees of freedom. These indicators
were originally chosen as carefully as would be expected
in ordinary practice.

Figures 3 and 4 show the errors in frequency plotted
against the percent of degrees of freedom retained. This
percentage is for the ratio of the number of indicator
degrees of freedom to the order of the uncondensed mass
matrix. Comparisons of mode shapes were also made for
the cases represented by examining the eigenvector com-
ponents with the largest magnitudes. It was found, in gen-
eral, that the eigenvector errors were considerably larger
than the frequency errors. In some instances, the mode
shapes from condensed solutions with small frequency
errors were found to be unrelated to the mode shapes from
the full solution. Usually, if frequencies were in error by
more than about 3 to 5%, the mode shapes were no better
than poor; frequency errors greater than 10 to 15% were
accompanied by mode shapes that were rated from very
poor to completely unrelated to the full-solution mode
shapes.

According to a conventional rule of thumb, the ratio of
the number of degrees of freedom in the model to the
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number of accurate modes iu the solution is between
two and three. Therefore, according to this rule, the first
four modes should be reproduced for either of these two
models by retaining less than 10% of the full number of
degrees of freedom. From another standpoint, it would
not seem reasonable to consider condensation procedures
to be highly effective unless accurate solutions for several
modes could be obtained consistently with at least an
order of magnitude reduction in the solution size. With
these anticipations in mind, the results presented in Figs. 3
and 4, which show large errors for retentions greater than
10%, were highly disappointing,

However, the procedure was not abandoned at this
point; instead, an entirely different approach was used for
selection of the indicator degrees of freedom. This was an
after-the-fact selection, in which the mode shapes from
the uncondensed solutions were inspected to select the
degrees of freedom that actually had the largest motions.
In an attempt to identify and retain certain key degrees
of freedom that apparently controlled solution validity,
trial-and-error changes were also made in the retained set
of indicators as the number of indicators in the set was
being reduced.

The results of the modified selection of indicators,
shown in Figs. 5 and 6, are a substantial improvement,
For both models, the first four modes have been recovered
with the order of the condensed eigenvalue problem solu-
tion (as given by the number of indicators) equal to less
than 10% of the order of the uncondensed mass matrix,

Ill. Evaluation of Results of Conventional Method

The success achieved for the modified selection con-
firms the theoretical validity of the conventional method
but is of little practical help to the analyst. Although it
was found that a selection of indicator degrees of freedom
that included the degrees of freedom with the largest
modal displacements tended to produce a substantial im-
provement in the validity of the solution, to make such
a selection would require either clairvoyance or prior
knowledge. It was also found neither necessary nor suffi-
cient to choose degrees of freedom with the largest entries
in the mass matrix, which is often used as a guideline for
selection.

Another unfortunate property of the conventional
method is the failure to converge toward improved accu-
racy. Addition of indicators to a poorly chosen set would
sometimes closely reproduce the current inaccurate solu-
tion. The danger here is that the consistency of the results
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could be misinterpreted as evidence of accuracy. Accu-
racy appears to depend upon the choice of a set of indi-
cators (not necessarily a large set) that contains key, but
elusive degrees of freedom. In some instances, the omis-
sion or addition of a single key indicator triggered the loss
or recovery of a complete mode.

One more difficulty of the conventional method is that
success or failure may be model-dependent. Better success
was observed here in original selections for the reflector
mode] than for the pedestal model. One reason for the
difference may be the separation of the natural modes, It
seems that the best results are obtained for analytical
models in which the modes have the widest frequency
separation.

IV. Modifications for Conventional Method

Two modifications to the conventional method are effec-
tive in increasing reliability and removing some of the
dependence upon the analyst’s intuition or prior knowl-
edge. The first consists of augmenting the indicator-
derived displacement functions with up to six additional
“static loading” displacement vectors. The second involves
improving accuracy by iterative recycling of the Rayleigh-
Ritz procedure.

Iterative solutions within a reduced space have been
proposed previously. Jennings and Orr (Ref. 5) described
a simultaneous iteration method that employs an orthog-
onal set of trial vectors, and they also indicate an extension
that can be used for solutions of unconstrained structures.
Ojalvo and Newman (Ref. 6) proposed a reduced-space
solution employing a recursion algorithm to generate se-
quences of trial vectors. Whetstone and Jones (Ref. 7)
used an initial Rayleigh-Ritz method based upon a selec-
tion of static force and rigid-body displacement vectors
as the starting point for a reduced-space Stodola method
solution that generates orthogonal eigenvectors one at a
time. More recently, Dong, Wolf, and Peterson® employed
iterative repetitions of the Rayleigh-Ritz method. The
iterative Rayleigh-Ritz method, which is possibly the sim-
plest of all to implement within existing analysis systems,
is examined here with respect to accuracy and economy
for practical applications. Additional displacement func-
tions for the first modification can be developed within
the context of a standard matrix interpretive analysis
formulation such as the Structural Analysis and Matrix
Interpretive System (SAMIS) program. The recycling
modification, which also appears to have more potential,

In an article to be published in the Int. J. Numer. Meth. Eng.
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has been readily incorporated within both the SAMIS
and NASA Structural Analysis (NASTRAN) programs,

A. Augmented Displacement Function Modification

The additional displacement functions are developed
by first determining the six rigid-body displacements of
the structure for independent unit motions (three trans-
lations and three rotations) of the foundation. A loading
matrix is derived by post-multiplying the mass matrix by
the N X 6 matrix of rigid-body displacements. That is,
let [p] be the set of rigid-body displacements and let [P]
be the loading matrix; then

[P] = [M] [p] (5)

This loading is applied to the structure, and the cor-
responding displacements are added to the displacements
constructed from the indicators. The resulting set of dis-
placement functions becomes the transformation used in
the condensed solution. Thus, let [yz] be the additional
static-loading displacement functions, and let [y,] be the
displacement functions generated by indicators; then [yz]
is found from the solution of

[K] [yz] = [P] (6)

and
[y] = [y:! vzl ()

From this point on, the solution proceeds in the con-
ventional way (see Eq. 2). The order of the condensed
eigenvalue problem is now L + 6. If L is small, the in-
crease can be readily accommodated in the solution; if L
is large, the increase is relatively small. Therefore, the
increase in the size of the solution and the computation
time caused by the additional functions is not significant.
In a limited number of evaluations of the relative
accuracy improvement, it appears that the rigid-body
translations have a larger influence than the rigid-body
foundation rotations. Hence, the effort in generating pro-
gram input to define foundation rotations may not be
worthwhile.

The added displacement functions constructed from the
rigid-body translations are proportional to the displace-
ments that result from loading the structure with its own
weight applied sequentially in the directions of the foun-
dation motions. In fact, the suggested additional displace-
ment functions were motivated by typically successful
applications of Rayleigh’s method in recovering first-mode
frequencies with the assumption of a single static self-
weight loading displacement function. Therefore, the
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modification will ordinarily ensure the recovery of the
fundamental frequency, and thereby remove at least one
defect that has occasionally been noted in the conven-
tional method.

B. Recycling Modification

The recycling modification is applied after an initial
solution using indicator functions (optionally augmented
by the static loading functions). The initial mode shapes
for the full N degrees of freedom are recovered as in
Eq. (4) and are then applied as in Eq. (5) (in place of the
rigid-body displacements) to generate new loading vec-
tors, e.g.,

[X] = [y°] [¢°] (8)
[P*] = [M][X°] 9)

After this, the transformation matrix for the first additional
cycle is constructed by solving

[K] [y*] = [P*] (10)

The eigenvalue problem solution is then regenerated
according to Eq. (3). This procedure can be repeated
iteratively until convergence to within a specified criterion
is achieved. Equations (8), (9), and (10) are applicable
with incremented superscripts at each subsequent cycle.
A mathematical proof of eventual cyclic convergence
need not be supplied; it is only necessary to consider this
as an extension of Stodola’s procedure of matrix iteration
(Ref. 4), for which convergence is readily established
(Ref. 8). That is, instead of iterating on one trial modal
vector at a time, the present modification is an extension
to a block iteration that operates upon several vectors
simultaneously. Here, the eigenvalue problem is solved
repeatedly in a greatly reduced space, which is in con-
trast to the classical uncondensed solution procedures that
perform only one solution of the problem in the full space
of the original mass matrix. Therefore, to achieve solution
economy, the emphasis is now placed upon efficient per-
formance of the operations leading to the formation of
Eq. (3) rather than upon the procedures used in obtaining
solutions to this equation.

V. Results and Discussion of Modifications

The effects of the modifications to the procedures for
the pedestal model are shown in Fig. 7. Three curves are
included for each mode: curve A is for reference—to show
the accuracy for the conventional initial solution with
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indicator functions only; curve B shows the accuracy for
the first modification—that is, six static-loading functions
have been added to the indicator functions of curve A;
and curve C represents the accuracy obtained with the
addition of only one new iteration cycle and starting with
the mode shapes associated with the points of curve B.
It can be seen in comparison with the conventional solu-
tion that solutions with the six new displacement func-
tions are often several times more accurate, and that
solutions from the iteration cycle are typically more ac-
curate by more than one order of magnitude.

Most of the indicators selected for the curves of Fig. 7
were from the after-the-fact selection, and consisted of a
relatively small set. In a few cases, the addition of one
iteration to the initial solution for larger sets of indicators
produced excellent accuracy for relatively larger numbers
of natural modes. In some of these examples, the particu-
lar set of indicators had produced invalid results on the
initial cycle. For a larger system a solution was obtained
without condensation for an analytical model of an an-
tenna reflector that contained about 1300 degrees of free-
dom. Only the first modal solution was generated, which
required about 32 min of computation time (Univac 1108-
Exec 8 computer) in the eigenvalue solution phase. After

this, a Guyan reduction solution was performed with 29
indicator degrees of freedom and continued through five
additional iteration cycles. The initial solution was com-
pleted after 15 min, the first iteration required 13 min, and
each of the four subsequent iteration cycles took 8 min.
The changes in modal frequencies at each cycle diminish
approximately according to a geometric progression. This
relationship was used to extrapolate the modal frequencies
at convergence. Figure 8a shows the numbers of natural
frequencies obtained cyclically with respect to limiting
percentages of variation from the extrapolated convergent
frequencies. Figure 8b indicates the estimated computer
time saved if the same number of modes that were ob-
tained with less than 0.05% variation from the convergent
frequencies had been derived by the uncondensed model.

Both types of the modifications have been implemented
within the JPL SAMIS program by means of a few
pseudo-instructions. The recycling modification has been
implemented in a JPL-parochial version of the NASTRAN
program, called “Level 14.0.2.” This program level permits
the specification of convergence criteria on natural fre-
quency or generalized mass and also provides the option
of truncating the number of solution vectors that are re-
tained after a specified number of iteration cycles.

146

References

- Guyan, R. J., “Reduction of Stiffness and Mass Matrices,” AIAA J., Vol. 3, No. 2,

p. 380, 1965.

. Kaufman, S., and Hall, D. B., “Reduction of Mass and Loading Matrices,”

AIAA ], Vol. 6, No. 3, pp. 550-551, 1968.

. Ramsden, R. N., and Stoker, R. J., “Mass Condensation: A Semi-automatic

Method for Reducing the Size of Vibration Problems,” Int. J. Numer. Meth.
Eng., Vol. 1, pp. 333-349, 1969.

. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, 1st Edition.

Addison-Wesley, Redding, Mass., 1957.

. Jennings, A., and Orr, D. R. L., “Application of the Simultaneous Iteration

Method to Undamped Vibration Problems,” Int. J. Numer. Meth. Eng., Vol. 3,
pp. 13-24, 1971.

. Ojalvo, I. U., and Newman, M., “Vibration Modes of Large Structures by an

Automatic Matrix-Reduction Method,” AIAA J., Vol. 8, No. 7, pp. 1234-1239,
1970.

. Whetstone, W. D., and Jones, C. E., “Vibrational Characteristics of Linear

Space Frames,” Proc. ASCE: ]. Struct. Div., Vol. 95, No. ST 10, pp. 2077-2091,
1969.

. Hurty, W. C., and Rubinstein, M. F., Dynamics of Structures, 1st Edition.

Prentice-Hall, Englewood Cliffs, N.J., 1964.

JPL TECHNICAL REPORT 32-1526, VOL. Vil



13.0m

Fig. 1. Thirty-degree reflector sector structure
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Fig. 2. Pedestal structure
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Fig. 3. Accuracy of condensed solution for reflector sector structure: original indicator selections
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Fig. 4. Accuracy of condensed solution for pedestal structure: original indicator selections
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